
www.manaraa.com

International Journal of Control, Automation and Systems 15(4) (2017) 1544-1552
http://dx.doi.org/10.1007/s12555-016-0019-5

ISSN:1598-6446 eISSN:2005-4092
http://www.springer.com/12555

Robustness Design of a Dynamic Output-feedback Decentralized Con-
troller Using H∞ Synthesis and LMI Paradigm
Ali Sghaier Tlili

Abstract: This paper proposes developing a H∞ dynamic output-feedback decentralized control design method
for nonlinear interconnected systems subject to time-varying parameters and external disturbances. The designed
controller is formulated as an optimization problem subject to linear matrix inequalities (LMIs) for the concurrent
computation of the decentralized observation and control gains, and for the external disturbance mitigation by means
of a H∞ performance criterion minimization. The propounded optimization problem, designed in LMI conditions,
is expeditiously resolved by a one-step procedure to override the conservatism generated by using many step-based
procedures often used in the analysis and synthesis of interconnected systems. The effectiveness of the developed
control scheme is demonstrated through simulation results of multimachine power systems.

Keywords: Decentralized observation and control, H∞ criterion, interconnected systems, LMI optimization, multi-
machine power systems.

1. INTRODUCTION

In the last few years, a significant progress has been
realized in divers control domains of interconnected pro-
cesses. This progress is motivated by emerging applica-
tions of novel actuation devices for cooperating robotic
systems [1], aerospace processes [2], inverted pendulums
[3] and power systems [4]. Therefore, designing a cen-
tralized controller for interconnected processes may not
be rigorous because of high dimensions, time multiscale
and geographic distribution of subsystems. Furthermore,
the interconnections between subsystems are always non-
linear with parameter variations and affected by exoge-
nous disturbances. These constraints motivate the design
of decentralized control schemes with no communication
transfer among individual controllers leading to practica-
ble technically control methodologies [5].

In the state-feedback control design, all the state vari-
ables are always difficult to reach, not wholly available or
costly to measure with accurate sensors. It is then appro-
priate to synthesize a state observer able to estimate the
unavailable states that can be used in other applications
such as the fault detection and isolation. Recently, many
works are dealt with this problem. In [6], for instance,
it is investigated the problem of fault detection filtering
for nonlinear switched stochastic systems in the T-S fuzzy
framework. While, the work in [7] is devoted to tackle
the problem of Hankel-norm output-feedback controller
design for a class of T-S fuzzy stochastic systems. Thus,
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the fuzzy-basis-dependant output-feedback controller de-
sign method is analyzed with the aid of fuzzy Lyapunov
function technique. On the other hand, the authors in [8]
addressed the stability analysis and the robust stabiliza-
tion of nonlinear interconnected systems through the use
of H∞ criterion. Thus, the designed method is character-
ized in the LMI framework. Nevertheless, my paper deals
with the problem of robustness design of a H∞ decentral-
ized output-feedback model reference tracking controller
for a class of large-scale nonlinear systems.

As a matter of fact, the developed control approach in
this work is propounded to guarantee the asymptotic sta-
bility in the Lyapunov framework and the model refer-
ence tracking control, to reconstruct the unavailable state
variables, and to ensure the robust performances by mit-
igating the exogenous disturbances applied to the over-
all interconnected system. The novelty of this article is
specifically the LMI formulation that can be applied for
the decentralized robust control design of nonlinear un-
certain disturbed interconnected systems. Thereby, both
the Lyapunov quadratic stability and the H∞ performances
of the studied system are proposed as an innovative opti-
mization problem subject to LMI constraints, which can
be solved by a one-step LMI optimization design to com-
pute concurrently the control and observation gain matri-
ces. However, several optimization problems, dedicated
to controlling interconnected systems, are formulated as
bilinear matrix inequalities (BMIs) and solved by several
step-based procedures that can calculate separately the
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control and the observation gains leading to conservative
and suboptimal solutions [9]. Besides, many optimization
problems are resolved by using algebraic Riccati equa-
tions, which may be difficult to resolve and can not readily
cover diverse types of further constraints [10].

The reminder of this work is presented in the following
order. The system description and the problem under in-
vestigation are stated in Section 2. In Section 3, the H∞
decentralized observation and control design is proposed
as an optimization problem subject to LMI constraints,
while Section 4 highlights the simulation results of the de-
veloped control approach applied to a power system with
three interconnected generators. At last, some conclusions
end this work.

2. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

A large-scale interconnected system composed of N
subsystems with uncertain parameters and external distur-
bances can be described by

ẋi(t) = (Ai +∆Ai)xi(t)+(Bi +∆Bi)ui(t)

+ξi(t,x(t))+θi(t)

yi(t) =Cixi(t), i = 1, . . . ,N,

(1)

where Ai ∈ Rni×ni is the state matrix, Bi ∈ Rni×mi is the con-
trol matrix and Ci ∈ Rpi×ni represents the output matrix of
each subsystem; ∆Ai ∈ Rni×mi and ∆Bi ∈ Rni×mi are time-
varying matrices representing norm-bounded parametric
uncertainties as follows:

[∆Ai ∆Bi] = DiFi(t)[E1i E2i], FT
i (t)Fi(t)≤ I (2)

with Di,E1i and E2i known constant matrices of suitable
dimensions. Fi(t) reflects an unknown function assumed
to have Lebesgue measurable elements and I represents
the identity matrix of a suitable size.
xi(t) ∈ Rni ,ui(t) ∈ Rmi and yi(t) ∈ Rpi designate the state
vector, the control vector and the output vector of the ith
subsystem, respectively; θi(t) is the external disturbance
vector and ξi(t,x(t)) denotes the nonlinear interconnec-
tion function vector, which is supposed to be uncertain
and meet the following inequality:

∥ξi(t,x(t))∥ ≤ αi∥x(t)∥ (3)

with αi > 0(i = 1, . . . ,N) known interconnection real con-
stant bounds and ∥.∥ the Euclidean norm.

The state equation of the global system is expressed by
ẋ(t) = (A+∆A)x(t)+(B+∆B)u(t)

+ξ (t,x(t))+θ(t),
y(t) =Cx(t),

(4)

with

x(t) =


x1(t)
x2(t)

...
xN(t)

 , u(t) =


u1(t)
u2(t)

...
uN(t)

 ,

y(t) =


y1(t)
y2(t)

...
yN(t)

 , ξ (t,x(t)) =


ξ1(t,x(t))
ξ2(t,x(t))

...
ξN(t,x(t))

 ,

θ(t) =


θ1(t)
θ2(t)

...
θN(t)

 , A = diag{Ai}, B = diag{Bi},

and C = diag{Ci}.

The uncertainty matrices ∆A and ∆B are defined in the
following form:

[∆A ∆B] = DF(t)[E1 E2], FT (t)F(t)≤ I (5)

with D = diag{Di}, F(t) = diag{Fi(t)}, E1 = diag{E1i}
and E2 = diag{E2i} for i = 1, . . . ,N.

The state observer of each subsystem, using only local
information of the subsystem inputs and outputs, is ex-
pressed by{

˙̂xi(t) = Aix̂i(t)+Biui(t)+Li[yi(t)− ŷi(t)]

ŷi(t) =Cix̂i(t), i = 1, . . . ,N,
(6)

where x̂i(t) ∈ Rni is the observed state of xi(t) and Li ∈
Rni×pi is the subsystem observation gain matrix.

The state observer of the global system (4), composed
of N local observers, is given by{

˙̂x(t) = Ax̂(t)+Bu(t)+L[y(t)− ŷ(t)],

ŷ(t) =Cx̂(t),
(7)

where x̂T (t) = [x̂T
1 (t) x̂T

2 (t) . . . x̂T
N(t)] and L = diag{Li}

represents the block diagonal of the observation gain.
The model reference of the ith subsystem can be de-

signed by

ẋri(t) = Arixri(t)+ ri(t) (8)

where xri(t) ∈ Rni is the reference state vector of the ith
subsystem, Ari ∈ Rni×ni is the reference state matrix as-
sumed to be asymptotically stable, and ri(t) ∈ Rni consti-
tutes a bounded reference input.

The model reference of the global system (4) is then
given by

ẋr(t) = Arxr(t)+ r(t) (9)

where xT
r (t) = [xT

r1 xT
r2 . . . xT

rN ] is the reference state
vector, Ar = diag{Ari} is the reference state matrix and
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rT (t) = [rT
1 rT

2 . . . rT
N ] is the bounded reference input of

the global system.
On the other hand, the ith subsystem control law is ex-

pressed by

ui(t) = Ki[xri(t)− x̂i(t)] (10)

where Ki ∈ Rmi×ni is the local control gain matrix.
The model reference tracking control law for the global

system (4) is as follows:

u(t) = K[xr(t)− x̂(t)] (11)

with K = diag{Ki} the decentralized control gain matrix.
Additionally, the local tracking error of each subsystem

is given in the following form:

eci(t) = xri(t)− xi(t). (12)

Moreover, the observation error related to the real and
observed states is defined by

ei(t) = xi(t)− x̂i(t). (13)

The time derivative of (12) leads to

ėci(t) =[Ai −BiKi +∆Ai −∆BiKi]eci(t)

− [Bi +∆Bi]Kei(t)+ [Ari −Ai −∆Ai]xri(t)

−ξi(t,x(t))−θi(t)+ ri(t). (14)

The tracking error of the global system is described by

ėc(t) =[A−BK +∆A−∆BK]ec(t)

− [B+∆B]Ke(t)+ [Ar −A−∆A]xr(t)

−ξ (t,x(t))−θ(t)+ r(t). (15)

The dynamics of the observation error is expressed by
differentiating (13) as follows:

ėi(t) =[Ai −LiCi +∆BiKi]ei(t)

− [∆Ai −∆BiKi]eci(t)

+∆Axr(t)+ξi(t,x(t))+θi(t). (16)

The observation error of the global system can be ex-
pressed by

ė(t) = [A−LC+∆BK]e(t)− [∆A−∆BK]ec(t)

+∆Axr(t)+ξ (t,x(t))+θ(t). (17)

Thereafter, the augmented system comprising the ob-
servation error (17), the tracking error (15) and the model
reference (9), is given by

˙̃x(t) = Ãx̃(t)+ B̃θ̃(t)+ ξ̃ (t,x(t)), (18)

where

x̃(t) =

 e(t)
ec(t)
xr(t)

 ,

Ã =

 A−LC+∆BK −∆A+∆BK
−BK −∆BK A−BK +∆A−∆BK

0 0
,

∆A
Ar −A+∆A

Ar

 ,

B̃ =

 I 0
−I I
0 I

 , ξ̃ (t,x(t)) =

 ξ (t,x(t))
−ξ (t,x(t))

0

 ,

and θ̃(t) =
[

θ(t)
r(t)

]
.

It is noted that the effect of the disturbance θ̃(t) can
deteriorate the performances of the controlled system. To
mitigate this effect, the following H∞ performance crite-
rion can be used [8]:∫ t f

0
eT

c (t)Qcec(t)dt +
∫ t f

0
eT (t)Qee(t)dt

=
∫ t f

0
x̃T (t)Q̃x̃(t)dt

≤ η2
∫ t f

0
θ̃ T (t)θ̃(t)dt, (19)

where η is a prescribed attenuation level, t f reflects the
final time of control, Qc and Qe are symmetric positive
definite weighting matrices of control and observation for
the global system. In addition, the matrix Q̃ related to the
overall closed-loop system (18) is defined by

Q̃ =

 Qe 0 0
0 Qc 0
0 0 0

 . (20)

To propose new LMI conditions for the H∞ dynamic
output-feedback decentralized control design method for
nonlinear disturbed interconnected systems, the following
Lemmas are required:

Lemma1 [11]: For any matrices Γ, ∆ and Λ = ΛT > 0
of suitable dimensions, we have

ΓT ∆+∆T Γ ≤ ΓT ΛΓ+∆T Λ−1∆. (21)

Lemma2 [12]: For real matrices M,N,Π,Λ,Ξ and a
regular matrix V with suitable dimensions. It follows that[

Π+NTV−1N ΞT

Ξ Λ+MV MT

]
< 0

⇒
[

Π ΞT +NT MT

Ξ+MN Λ

]
< 0. (22)

Lemma3 [13]: Consider a negative definite matrix Φ
and a matrix Λ with a suitable size such as ΛT ΦΛ ≤ 0.
Then, ∃ γ ∈ R so that the following inequality holds:

ΛT ΦΛ ≤−γ(ΛT +Λ)− γ2Φ−1. (23)
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3. LMI CONDITIONS FOR ENSURING THE
STABILITY AND H∞ PERFORMANCES OF

THE AUGMENTED SYSTEM

In this section, it is investigated the problem of stabil-
ity analysis and H∞ performance improvement of the de-
centralized feedback tracking controller design for (18).
Hence, a positive-definite Lyapunov function is given by

V (x̃) = x̃T Px̃ , P =

 Po 0 0
0 Pc 0
0 0 Pr

 (24)

where Po = diag{Poi},Pc = diag{Pci},Pr = diag{Pri} are
symmetric positive-definite Lyapunov matrices.

On the other hand, the augmented system (18) is stable
in the sense of Lyapunov and the H∞ performance criterion
is guaranteed for the attenuation level η if the following
inequality is verified [14]:

V̇ (x̃)+ x̃T Q̃x̃−η2θ̃ T θ̃ ≤ 0. (25)

According to (18) and (24), the development of (25) leads
to

x̃T
[

ÃT P+PÃ+ Q̃
]

x̃+ ξ̃ T Px̃+ x̃T Pξ̃ + θ̃ T B̃T Px̃

+ x̃T PB̃θ̃ −η2θ̃ T θ̃ ≤ 0. (26)

In order to rearrange the inequality (26) within a quadratic
form, we use Lemma 1. Relying on (21), it follows that

ξ̃ T Px̃+ x̃T Pξ̃ ≤ ξ̃ T ξ̃ + x̃T PPx̃ ≤ x̃T
[

M+PP
]

x̃ (27)

with

M =


0 0 0

0 2
N

∑
i=1

α2
i I −2

N

∑
i=1

α2
i I

0 −2
N

∑
i=1

α2
i I 2

N

∑
i=1

α2
i I

 . (28)

The inequality (26) can then be expressed by

x̃T
[

ÃT P+PÃ+PP+M+ Q̃
]

x̃+ θ̃ T B̃T Px̃

+ x̃T PB̃θ̃ −η2θ̃ T θ̃ ≤ 0 (29)

whih is equivalent to[
x̃
θ̃

]T [ ÃT P+PÃ+PP+M+ Q̃ PB̃
B̃T P −η2I

][
x̃
θ̃

]
≤ 0.

(30)

For the augmented system (18), if P = PT > 0 is the
unique solution of the inequality[

ÃT P+PÃ+PP+M+ Q̃ PB̃
B̃T P −η2I

]
< 0, (31)

then it is stable within the Lyapunov framework and the
H∞ performance is ensured for a level of attenuation η .

It is clear that (31) is not a tractable LMI, it can be de-
veloped according to (18), (20), (24) and (28) as follows:

X11 X12 Po∆A Po 0
XT

12 X22 X23 −Pc Pc

∆AT Po XT
23 X33 0 Pr

Po −Pc 0 −η2I 0
0 Pc Pr 0 −η2I

< 0 (32)

with

• X11 = (A − LC)T Po + Po(A − LC) + PoPo + Qe +
KT ∆BT Po +Po∆BK;

• X12 =−KT BT Pc −KT ∆BT Pc −Po∆A+Po∆BK;
• X22 = (A−BK)T Pc+Pc(A−BK)+PcPc+Qc+(∆A−

∆BK)T Pc +Pc(∆A−∆BK)+2
N
∑

i=1
α2

i I;

• X23 = Pc(Ar −A)−Pc∆A−2
N
∑

i=1
α2

i I;

• X33 = AT
r Pr +PrAr +PrPr +2

N
∑

i=1
α2

i I.

It is worth pointing out that (32) is a BMI since it involves
several cross coupling terms of Po,Pc,Pr,L,K and η . To
change this BMI into a standard LMI, let us part the terms
containing uncertainties in (32). It yields

Ω+∆Ω < 0, (33)

where

Ω =


Ω11 −KT BT Pc 0 Po 0

−PcBK Ω22 Ω23 −Pc Pc

0 ΩT
23 Ω33 0 0

Po −Pc 0 −η2I 0
0 Pc Pr 0 −η2I


with

• Ω11 = AT Po +PoA−CT LT Po −PoLC+PoPo +Qe;
• Ω22 = AT Pc + PcA − KT BT Pc − PcBK + PcPc + Qc +

2
N
∑

i=1
α2

i I;

• Ω23 = Pc(Ar −A)−2
N
∑

i=1
α2

i I;

• Ω33 = PrAr +AT
r Pr +PrPr +2

N
∑

i=1
α2

i I.

and

∆Ω =


∆Ω11 ∆Ω12 Po∆A 0 0
∆ΩT

12 ∆Ω22 −Pc∆A 0 0
∆AT Po −∆AT Pc 0 0 0

0 0 0 0 0
0 0 0 0 0


with

• ∆Ω11 = KT ∆BT Po +Po∆BK;
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• ∆Ω12 =−Po∆A+Po∆BK −KT ∆BT Pc;
• ∆Ω22 = ∆AT Pc +Pc∆A−KT ∆BT Pc −Pc∆BK.

By using the norm-bounded uncertainty structure defined
in (5) and Lemma 1 applied to the block diagonal matrices
∆Ω11 and ∆Ω22, ∆Ω can be bounded as follows:

∆Ω ≤


Ψ11 ∆Ω12 Po∆A 0 0

∆ΩT
12 Ψ22 −Pc∆A 0 0

∆AT Po −∆AT Pc 0 0 0
0 0 0 0 0
0 0 0 0 0


with

• Ψ11 = µ1KT ET
2 E2K +µ−1

1 PoDDT Po;
• Ψ22 = µ2ET

1 E1 +µ−1
2 PcDDT Pc +µ3KT ET

2 E2K +
µ−1

3 PcDDT Pc.

On the other hand, to transform the anti-diagonal uncer-
tainty terms ∆Ω12, ∆ΩT

12, Po∆A, ∆AT Po, Pc∆A and ∆AT Pc

into block diagonal matrices, we consider Lemma 2.
Hence, based on the use of the norm-bounded uncer-

tainty structure defined in (5) and Lemma 2, the matrix
∆Ω is then bounded by

∆Ω ≤


Φ11 0 0 0 0

0 Φ22 0 0 0
0 0 Φ33 0 0
0 0 0 0 0
0 0 0 0 0

 (34)

with

• Φ11 = (µ1 +µ6)KT ET
2 E2K +(µ−1

1 +µ−1
4 +µ−1

5 +
µ−1

7 )PoDDT Po;
• Φ22 = (µ2 +µ4)ET

1 E1 +(µ−1
2 +µ−1

3 +µ−1
6 +

µ−1
8 )PcDDT Pc +(µ3 +µ5)KT ET

2 E2K;
• Φ33 = µ7ET

2 E2 +µ8ET
1 E1.

Therefore, the inequality (33) becomes
Ω11 +Φ11 −KT BT Pc 0 Po 0
−PcBK Ω22 +Φ22 Ω23 −Pc Pc

0 ΩT
23 Ω33 +Φ33 0 Pr

Po −Pc 0 −η2I 0
0 Pc Pr 0 −η2I


< 0. (35)

In order to rearrange the matrices involved in (35), let us
first multiply respectively the left-hand side and the right-
hand side of this inequality by the full-rank matrices

I 0 0 0 0
0 0 0 I 0
0 I 0 0 0
0 0 I 0 0
0 0 0 0 I

 and


I 0 0 0 0
0 0 I 0 0
0 0 0 I 0
0 I 0 0 0
0 0 0 0 I

 .

It follows that


Ω11 +Φ11 Po −KT BT Pc 0 0

Po −η2I −Pc 0 0
−PcBK −Pc Ω22 +Φ22 Ω23 Pc

0 0 ΩT
23 Ω33 +Φ33 Pr

0 0 Pc Pr −η2I


< 0. (36)

Additionally, the number of nonlinear terms can be de-
creased by multiplying the left-hand side and the right-
hand side of (36) by diag{W,W,W, I, I} with W = P−1

c ,
and by using the new parameters Y = KW and Z = PoL. It
yields[

Ξ11 Ξ12

ΞT
12 Ξ22

]
< 0, (37)

where

Ξ11 =

[
W 0
0 W

][
T1 Po

Po −η2I

][
W 0
0 W

]
+

[
(µ1 +µ6)Y T ET

2 E2Y 0
0 0

]
(38)

with T1 = AT Po +PoA−CT ZT −ZC+PoPo +Qe +(µ−1
1 +

µ−1
4 +µ−1

5 +µ−1
7 )PoDDT Po.

To bypass the problem of nonlinear terms in (38), one can
use Lemma 3. Thus, (38) becomes

Ξ11 ≤−2γ
[

W 0
0 W

]
− γ2

[
T1 Po

Po −η2I

]−1

+

[
(µ1 +µ6)Y T ET

2 E2Y 0
0 0

]
(39)

which is equivalent to

Ξ11 ≤
[

−2γW +(µ1 +µ6)Y T ET
2 E2Y 0

0 −2γW

]
− γ2

[
T1 Po

Po −η2I

]−1

. (40)

If the Schur complement formula is applied to the inequal-
ity (40), then it yields the inequality (41) at the top of the
next page.

It should be noted that (41) is not a standard LMI.
To overcome this problem, one can use the Schur com-
plement formula a second time to transform (41) into
LMI (42) with T̃1 = AT Po +PoA−CT ZT − ZC +Qe and
ϒ =−(µ−1

1 +µ−1
4 +µ−1

5 +µ−1
7 )−1I.

On the other hand, based on the Schur complement
formula, the matrix Ξ22, defined in (37), is changed into
the LMI (43) with T̃2 = WAT +AW −Y T BT −BY + I +

(µ−1
2 + µ−1

3 + µ−1
6 + µ−1

8 )DDT , T̃3 = Ar −A− 2
N
∑

i=1
α2

i W

and T̃4 = AT
r Pr +PrAr +µ7ET

2 E2 +µ8ET
1 E1 +2

N
∑

i=1
α2

i I.
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−2γW +(µ1 +µ6)Y T ET

2 E2Y 0 γI 0
0 −2γW 0 γI
γI 0 T1 Po

0 γI Po −η2I

≤ 0 (41)



−2γW 0 Y T ET
2 Y T ET

2 γI 0 0 0
0 −2γW 0 0 0 0 0 γI

E2Y 0 −µ−1
1 I 0 0 0 0 0

E2Y 0 0 −µ−1
6 I 0 0 0 0

γI 0 0 0 T̃1 Po PoD Po

0 0 0 0 Po −I 0 0
0 0 0 0 DT Po 0 ϒ 0
0 γI 0 0 Po 0 0 −η2I


≤ 0 (42)



T̃2 W W WET
1 WET

1 Y T ET
2 Y T ET

2 T̃3 0 I
W −Q−1

c 0 0 0 0 0 0 0 0

W 0 −
(

2
N
∑

i=1
α2

i I
)−1

0 0 0 0 0 0 0

E1W 0 0 −µ−1
2 I 0 0 0 0 0 0

E1W 0 0 0 −µ−1
4 I 0 0 0 0 0

E2Y 0 0 0 0 −µ−1
3 I 0 0 0 0

E2Y 0 0 0 0 0 −µ−1
5 I 0 0 0

T̃ T
3 0 0 0 0 0 0 T̃4 Pr Pr

0 0 0 0 0 0 0 Pr −I 0
I 0 0 0 0 0 0 Pr 0 −η2I


≤ 0 (43)

Besides, Ξ12, involved in (37), can be written as

Ξ12 =



−Y T BT 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−W 0 0 0 0 0 0 0 0 0


. (44)

Finally, the inequality (37) is transformed into the follow-
ing LMI:[

Σ11 Σ12

ΣT
12 Σ22

]
< 0 (45)

where Σ11,Σ22 and Σ12 are defined respectively by (42),
(43) and (44). The resolution of the LMI (45) leads to the
calculation of the decentralized control gain K =YW−1 as
well as the decentralized observation gain L = P−1

o Z.
To obtain an efficient tracking control with more excel-

lently performances, the mitigation level η should be re-
duced as much as possible. Thereafter, the control design
method is stated in the following minimization problem:

minimizeη2

subject toPo = PT
o > 0,W =W T > 0,Pr = PT

r > 0
and (45).

(46)

The developed optimization problem (46) can be com-
puted in a one-step procedure to concurrently extract the
decentralized gains of the controller and the state observer.

4. APPLICATION OF THE PROPOSED
APPROACH TO A POWER SYSTEM

This section aims to apply the proposed H∞ output-
feedback decentralized model reference tracking control
design to a three interconncted machine power system.
The studied process is presented in [15].

4.1. Power system model
It is noted that the power system involves three inter-

connected subsystems, where each subsystem is described
by a fourth order nonlinear model including the gover-
nor/turbine dynamics. The model of each subsystem is
expressed by the following state equation:{

ẋi(t) = Aixi(t)+Biui(t)+ξi(t,x(t))+θi(t)

yi(t) =Cixi(t), i = 1,2,3,
(47)

where ξi(t,x(t)) = ∑3
j=1, j ̸=i Hi jhi j(xi(t),x j(t)) reflects a

vector of nonlinear functions realizing the interconnection
among the ith and the jth subsystems, θi(t) is a vector
of external disturbances, ui(t) = ∆Xei(t) is the input vec-
tor, yi(t) = ∆δi(t) is the observation vector and xi(t) is the
state vector of the ith subsystem given by
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xi(t)T =

[
∆δi(t) ωi(t) ∆Pmi(t) ∆Xei(t)

]
with ∆δi(t) = δi(t) − δi0, ∆Pmi(t) = Pmi(t) − Pmi0 and
∆Xei(t) = Xei(t)−Xei0.

The matrices of the ith subsystem are as follows:

Ai =


0 1 0 0
0 − Dci

2Hi
− ω0

2Hi
0

0 0 − 1
Tmi

Kmi
Tmi

0 − Kei
Tei Riω0

0 − 1
Tei

 ,Bi =


0
0
0
1

Tei

 ,

Ci =
[

1 0 0 0
]
.

The interconnection parameters between two subsys-
tems are given by Hi j =

[
0 −αi j 0 0

]T
,αi j =

w0E ′
qiE

′
q jBi j

2Hi
and hi j(xi(t),x j(t)) = sin(δi(t)−δ j(t)) −

sin(δi0 −δ j0).
The generators and the transmission lines parameters of

the studied power system are listed below [15].

δi(t)
ωi(t)
Pmi(t)
Xei(t)
Hi

Dci

Tmi

Kmi

Tei

Kei

Ri

Bi j

ω0

E ′
qi

δi0

Pmi0

Xei0

Rotor angle for the ith machine, in rad;
Relative speed for the ith machine, in rad/s;
Mechanical power for the ith machine, in pu;
Steam valve opening for the ith machine, in pu;
Inertia constant for the ith machine, in s;
Damping cœfficient for the ith machine, in pu;
Time constant for the ith machine’s turbine, in s;
Gain of the ith machine’s turbine;
Time constant of the ith machine’s speed governor,
in s;
Gain of the ith machine’s speed governor;
Regulation constant of the ith machine, in pu;
Nodal susceptance between two machines, in pu;
Synchronous machine speed, in rad/s;
Internal transient voltage for the ith machine, in pu;
Nominal value of δi(t);
Nominal value of Pmi(t);
Nominal value of Xei(t).

In the case of parameter variations, the nonlinear model
(47) can be generalized by

ẋ1(t) = (A1 +∆A1)x1(t)+(B1 +∆B1)u1(t)

+H12h12(x1(t),x2(t))+H13h13(x1(t),x3(t))

+θ1(t)

ẋ2(t) = (A2 +∆A2)x2(t)+B2 +∆B2)u2(t)

+H21h21(x2(t),x1(t))+H23h23(x2(t),x3(t))

+θ2(t)

ẋ3(t) = (A3 +∆A3)x3(t)+(B3 +∆B3)u3(t)

+H31h31(x3(t),x1(t))+H32h32(x3(t),x2(t))

+θ3(t),
(48)

where ∆Ai and ∆Bi (i = 1, 2, 3) are assumed to be norm-
bounded time-varying matrices having the same structure
as (2) and θi(t), i = 1,2,3, are external disturbances.

4.2. Simulation study
The 3-machine power system parameters are summa-

rized in Table 1 [15].
Owing to [15], the parameters involved in Hi j are given

by α12 =α13 =−27.49,α21 =α23 =α31 =α32 =−23.10.
On the other hand, the nonlinear interconnection func-

tions of the studied power systems are detailed as follows:

ξ1(t,x) =


0

g12

0
0

 , ξ2(t,x) =


0

g22

0
0

 ,

and ξ3(t,x) = ξ2(t,x)

with g12 = H12h12(x1(t),x2(t))+H13h13(x1(t),x3(t)) and
g22 = H21h21(x2(t),x1(t))+H23h23(x2(t),x3(t)).

To test the robustness of the decentralized observer-
based control approach against uncertainties, the norm-
bounded matrices shown in (2) are illustrated by

∆A1 = D1F1(t)E11 , ∆A2 = D2F2(t)E12 , ∆A3 = ∆A2,

∆B1 = D1F1(t)E21 , ∆B2 = D2F2(t)E22 , ∆B3 = ∆B2,

with

D1 =
[

0 0 0 0.9|δ1(t)|max
]T

,

F1(t) =
[

0 − 0.6|δ1(t)|
|δ1(t)|max

0 − 0.6|δ1(t)|
|δ1(t)|max

]
,

D2 =
[

0 0 0 0.9|δ2(t)|max
]T

,

F2(t) =
[

0 − 0.6|δ2(t)|
|δ2(t)|max

0 − 0.6|δ2(t)|
|δ2(t)|max

]
,

D3 =
[

0 0 0 0.9|δ3(t)|max
]T

,

F3(t) =
[

0 − 0.6|δ3(t)|
|δ3(t)|max

0 − 0.6|δ3(t)|
|δ3(t)|max

]
,

E11 = E12 = E13 = I4

and E21 = E22 = E23 =
[

0 0 0 1
]T

.

It is worth noting that δi(t) = 1
Tei

− 1
Tei−∆Tei

is the para-
metric variation characterizing the time constant of the ith
machine’s speed governor with |δi(t)| ≤ 1.

Table 1. Parameters of the three interconnected machines.

Parameters Machine 1 Machine 2 Machine 3
xT (pu) 0.129 0.11 0.11
xd(pu) 1.863 2.36 2.36
x′d(pu) 0.257 0.319 0.319
H(s) 4 5.1 5.1

Dc(pu) 5 3 3
Tm(s) 0.35 0.35 0.35
Te(s) 0.2 0.2 0.2
R(pu) 0.05 0.05 0.05
Km, Ke 1 1 1

ω0(rad/s) 314.159 314.159 314.159
xi j(pu) x12 = 0.55 x23 = 0.6 x31 = 0.53
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To demonstrate the performances of the proposed ap-
proach, the model reference parameters are given by

Ari =


0 1 0 0

−100 −101 −102 −103
0 0 −10 −1
0 0 −1 −10

 ,

ri =


0

260cos(0.75t)
0
0

 .

The outcomes of the optimization problem (46), ap-
plied to the power system model (48) with Qe = 10I12

and Qc = 10I12, are focused upon the decentralized control
gain matrix, K = diag{Ki}, i = 1,2,3 such as

K1 =
[

6.5862 2.6599 14.1970 2.2455
]
,

K2 =
[

7.1526 3.0956 13.2886 2.1526
]
,

K3 =
[

7.1526 3.0956 13.2886 2.1526
]
,

and the decentralized observation gain, L = diag{Li}, i =
1, 2, 3 with

L1 =


8.5198

22.5382
1.3224
−3.9669

 , L2 =


7.8117
16.5221
1.1348
−5.5096

 ,

L3 =


7.8117

16.5221
1.1348
−5.5096

 .

The simulation results of the H∞ decentralized tracking
control design are depicted in Fig. 1, in which the evolu-
tion of the rotor angle variation ∆δi, the relative speed wi,
the mechanical power variation ∆Pmi and the steam valve
opening variation ∆Xei and their corresponding reference
models are simulated despite the nonlinear interconnec-
tion terms, the uncertain parameter variation and the exter-
nal disturbances θi(t) =

[
0 0.7sin(2 t) 0 0

]T ap-
plied to wi, i = 1, 2, 3, which constitutes an amplitude
about 40% of the tracking trajectory. These graphics
show the remarkable performances of the proposed con-
trol scheme.

Furthermore, to test the high performances of the de-
signed control approach, strong external disturbances il-
lustrated by θi(t) =

[
0 1.75sin(2 t) 0 0

]T with an
amplitude about 100% of the tracking trajectory, are ap-
plied to the studied power system. The simulation results
obtained with the same initial conditions used in the fore-
going case, are depicted in Fig. 2. It is plainly shown that
the power system does not have an unstable behavior. In
fact, all the state variables track effectively the reference
states.
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Fig. 1. Tracking control of the 3-machine power system
towards a disturbance of amplitude 40% applied
on wi, i = 1,2,3.
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Fig. 2. Tracking control of the 3-machine power system
towards a disturbance of amplitude 100% applied
on wi, i = 1,2,3.

5. CONCLUSION

In this work, the design of robust decentralized tracking
control has been addressed for a class of interconnected
systems. The asymptotic stability and the H∞ control syn-
thesis of the closed-loop system have been developed as
an optimization problem in terms of LMI constraints. The
proposed control scheme has been efficiently solved by
a one-step procedure to evaluate concurrently the decen-
tralized control and observation gains. The simulation re-
sults have demonstrated the outstanding performances of
the developed approach applied to a 3-strongly intercon-
nected machine power system in spite of parameter uncer-



www.manaraa.com

1552 Ali Sghaier Tlili

tainties and exogenous disturbances. Thereby, the elabo-
rated LMI optimization conditions can be contemplated as
significant improvements of precedent works dealing with
this subject. Moreover, the developed approach can be
extended to nonlinear interconnected systems with time-
varying delays, which could be my future work.
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